

Agilent 35670A Dynamic Signal Analyzer

Versatile two- or four-channel high-performance FFT-based spectrum/network analyzer 122 µHz to 102.4 kHz 16-bit ADC

Data Sheet

Frequency range	102.4 kHz 1 channel 51.2 kHz 2 channel 25.6 kHz 4 channel
Dynamic range	90 dB typical
Accuracy	±0.15 dB
Channel match	±0.04 dB and ±0.5 degrees
Real-time bandwidth	25.6 kHz/1 channel
Resolution	100, 200, 400, 800 & 1600 lines
Time capture	> 6 Msamples
Source types	Random, burst random, periodic chirp, burst chirp, pink noise, sine, swept-sine (Option1D2), arbitrary (Option 1D4)

Summary of Features on Standard Instrument

The following features are standard with the Agilent 35670A:

Instrument modes

FFT analysis Histogram/time Correlation analysis Time capture

Measurement

Frequency domain

Frequency response Power spectrum Linear spectrum Coherence

Cross spectrum Power spectral density

Time domain (oscilloscope mode)

Time waveform Autocorrelation
Cross-correlation Orbit diagram

Amplitude domain Histogram, PDF, CDF

Trace coordinates

Linear magnitude Unwrapped phase

Log magnitude Real part
dB magnitude Imaginary part
Group delay Nyquist diagram

Phase Polar

Trace units

Y-axis amplitude: combinations of units, unit value, calculated value, and unit format describe y-axis amplitude **Units:** volts, g, meters/sec², inches/sec², meters/sec, inches/sec, meters, mils, inches, pascals, Kg, N, dyn, lb, user-defined EUs

Unit value: rms, peak, peak-to-peak

Calculated value: V, V^2 , V^2/Hz , \sqrt{Hz} , V^2s/Hz (ESD)

Unit format: linear, dB's with user selectable dB reference,

dBm with user selectable impedance.

Y-axis phase: degrees, radians

X-axis: Hz, cpm, order, seconds, user-defined

Display formats

Single Quad

Dual upper/lower traces Small upper and largelower Front/back overlay traces

Measurement state Bode diagram

Waterfall display with skew, -45 to 45 degrees

Trace grids on/off Display blanking Screen saver

Display scaling

Autoscale Selectable reference
Manual Scale Linear or log X-axis

Input range tracking Y-axis log X & Y scale markers with expand and scroll

Marker functions

Individual trace markers Coupled multi-trace markers Absolute or relative marker

Peak search Harmonic markers Band marker

Sideband power markers Waterfall markers Time parameter markers Frequency response markers

Signal averaging (FFT mode)

Average types (1 to 9,999,999 averages)

RMS Time exponential

RMS exponential Peak hold

Time

Averaging controls

Overload reject Fast averaging on/off Update rate select

Select overlap process percentage

Preview time record

Measurement control

Start measurement

Pause/continue measurement

Triggering

Continuous (Freerun)

External (analog or TTL level)
Internal trigger from any channel
Source synchronized trigger

GPIB trigger Armed triggers Automatic/manual RPM step

Time step

Pre- and post-trigger measurement Delay

Tachometer input:

±4 V or ±20 V range 40 mv or 200 mV resolution Up to 2048 pulses/rev Tach hold-off control

Source outputs

Random Burst random
Periodic chirp Burst chirp
Pink noise Fixed sine

Note: Some source types are not available for use in optional modes. See option description for details.

Input channels

Manual range Anti-alias filters On/Off Up-only auto range AC or DC coupling

Up/down auto range LED half range and overload

indicators

Floating or grounded A-weight filters On/Off Transducer power supplies (4 ma constant current)

Frequency

20 spans from 195 mHz to 102.4 kHz (1 channel mode) 20 spans from 98 mHz to 51.2 kHz (2 channel mode) Digital zoom with 244 μ Hz resolution throughout the 102.4 kHz frequency bands.

Resolution

100, 200, 400, 800 and 1600 lines

Windows

Hann Uniform

Flat top Force/exponential

Math

+,-,*, / Conjugate

Magnitude Real and imaginary

Square Root FFT, FFT $^{-1}$ LN EXP * i ω or /i ω PSD

Differentiation A, B, and C weighting
Integration Constants K1 thru K5
Functions F1 thru F5

Analysis

Limit test with pass/fail
Data table with tabular readout
Data editing

Time capture functions

Capture transient events for repeated analysis in FFT, octave, order, histogram, or correlation modes (except swept-sine). Time-captured data may be saved to internal or external disk, or transferred over GPIB. Zoom on captured data for detailed narrowband analysis.

Data storage functions

Built-in 3.5 in., 1.44-Mbyte flexible disk also supports 720-KByte disks, and 2 Mbyte NVRAM disk. Both MS-DOS® and HP-LIF formats are available. Data can be formatted as either ASCII or binary (SDF). The 35670A provides storage and recall from the internal disk, internal RAM disk, internal NVRAM disk, or external GPIB disk for any of the following information:

Instrument setup states Trace data User-math Limit data

Time capture buffers Agilent Instrument BASIC

Waterfall display data Programs

GPIB capabilities

Conforms to IEEE 488.1/488.2 Conforms to SCPI 1992 Controller with Agilent Instrument Basic Option

Calibration & memory

Single or automatic calibration
Built-in diagnostics & service tests
Nonvolatile clock with time/date
Time/date stamp on plots and saved data files

Online help

Access to topics via keyboard or index

Fan

On/Off

Agilent 35670A Specifications

Instrument specifications apply after 15 minutes warm-up and within 2 hours of the last self-calibration. When the internal cooling fan has been turned OFF, specifications apply within 5 minutes of the last self-calibration. All specifications are with 400 line frequency resolution and with anti-alias filters enabled unless stated otherwise.

Frequency

102.4 kHz,
51.2 kHz (opt AY6*)
51.2 kHz
25.6 kHz
195.3 mHz to 102.4 kHz
97.7 mHz to 51.2 kHz
97.7 mHz to 25.6 kHz
122 µHz (1600 line
display)
61 µHz (1600 line
display)
122 µHz (800 line
display)

Maximum real-time bandwidth

FFT span for continuous data acquistion)

(Preset, fast averaging)

1 channel mode 25.6 kHz 2 channel mode 12.8 kHz 4 channel mode (Option AY6 only) 6.4 kHz

Measurement rate

(Typical) (Preset, fast averaging)

1 channel mode \geq 70 averages/sec 2 channel mode \geq 33 averages/sec 4 channel mode (Option AY6 only) \geq 15 averages/sec

Display update rate

Typical (Preset, fast average off) ≥ 5 updates/Sec Maximum ≥ 9 updates/Sec (Preset, fast average off, single channel, single display,

undisplayed trace displays set to data registers)

Accuracy

±30 ppm (.003%)

Single channel ampltude

Absolute amplitude accuracy (FFT)

(A combination of full scale accuracy, full scale flatness, and amplitude linearity.)

±2.92% (0.25 dB) of reading

±0.025% of full scale

FFT full scale accuracy at 1 kHz (0 dBfs)

±0.15 dB (1.74%)

FFT full scale flatness (0 dBfs) relative to 1 kHz

±0.2 dB (2.33%)

FFT amplitude linearity at 1 kHz measured on +27 dBVrms

range with time avg, 0 to -80 dBfs

±0.58% (0.05 dB) of reading

±0.025% of full scale

Amplitude resolution

(16 bits less 2 dB over-range) with averaging 0.0019% of full scale (typical)

Residual DC response (FFT mode)

Frequency display (excludes A-weight filter)

<-30 dBfs or 0.5 mVdc

FFT dynamic range

Spurious free dynamic range

(Includes spurs, harmonic distortion, intermodulation distortion, alias products). Excludes alias responses at extremes of span.

Source impedence = 50Ω .

800 line display.

00 dD + ...: - 1 / < 00

90 dB typical (<-80 dBfs)

- Option AY6 single channel maximum range extends to 102.4 kHz without anti-alias filter protection.
- ** Show all lines mode allows display of up to 131.1, 65.5 and 32.7 kHz respectively. Amplitudes accuracy is unspecified and not alias protected.

Full span FFT noise floor (typical)

Flat top window, 64 RMS averages, 800 line display.

Typical noise floor vs. range for different frequency spans

Amplitude range (dBVrms / Vrms)

Harmonic distortion	<-80 dBfs
Single Tone (in band), ≤ 0 dBfs	
Intermodulation distortion	<-80 dBfs
Two tones (in-band), each ≤ -6.02 dBfs	
Spurious and residual responses	<-80 dBfs
Source impedence = 50Ω .	
Frequency alias responses	
Single tone (out of displayed range),	

 \leq 0 dBfs, \leq 1 MHz

(≤ 200 kHz with IEPE transducer power

supply On)

2.5% to 97.5% of the frequency span <-80 dBfs Lower and upper 2.5% of frequency span <-65 dBfs

Input noise

Input noise level

Flat top window, -51 dBVrms range

Source impedance = 50Ω

 $<-140 \text{ dBVrms}/\sqrt{2}\text{Hz}$ Above 1280 Hz <-130 dBVrms/ $\sqrt{^2}$ Hz 160 Hz to 1280 Hz

Note: To calculate noise as dB below full scale:

Noise [dBfs] = Noise [dB/ $\sqrt{2}$ Hz] + 10LOG(NBW) - Range [dBVrms]; where NBW is the noise equivalent BW of the window (see below).

Window parameters	Uniform	Hann	Flat top
-3 dB bandwidth*	0.125% of span	0.185% of span	0.450% of span
Noise equivalent bandwidth*	0.125% of span	0.1875% of span	0.4775% of span
Attenuation at ±½ bin	4.0 dB	1.5 dB	0.01 dB
Shape factor	716	9.1	2.6
(-60 dB BW/-3 dB BW)			

^{*} For 800 line displays. With 1600, 400, 200, or 100 line displays, multiply bandwidths by 0.5, 2, 4, and 8, respectively.

Single channel phase

Phase accuracy relative to external $\pm 4.0 \deg$ trigger

16 time averages center of bin, DC coupled 0 dBfs to -50 dBfs only $0 \text{ Hz} < \text{freq} \le 10.24 \text{ kHz}$ only

For Hann and flat top windows, phase is relative to a cosine wave at the center of the time record. For the uniform, force, and exponential windows, phase is relative to a cosine wave at the beginning of the time record.

Cross-channel amplitude

FFT cross-channel gain accuracy ± 0.04 dB (0.46%) Frequency response mode Same amplitude range At full scale: Tested with 10 RMS averages on the -11 to +27 dBVrms ranges, and 100 RMS averages on the -51 dBVrms range

Cross-channel phase

Cross-channel phase accuracy	± 0.5 deg	
(Same conditions as cross-channel	Ü	
amplitude)		

Innut

Input	
Input ranges (full sc	ale)
(Auto-range capabilit	ty)
	+27 dBVrms (31.7 Vpk) to -51 dBVrms
	(3.99 mVpk) in 2 dB steps
Maximum innut lave	12 Vnl.

(3.99 mVpk) ir	1 Z dB steps
Maximum input levels	42 Vpk
Input impedance	1 MΩ ±10%
	90 μF nominal
Low side to chassis impedance	1 MΩ ±30% (typical)
Floating mode	<0.010 µF
Grounded mode	≤100 Ω
AC coupling rolloff	<3 dB rolloff at 1 Hz
Source impedance = 50Ω	
Common mode rejection ratio	

Single tone at or below 1 kHz	
-51 dBVrms to -11 dBVrms ranges	>75 dB typical
-9 dBVrms to +9 dBVrms ranges	>60 dB typical
+11 dBVrms to +27 dBVrms ranges	>50 dB typical

Common mode range

(floating mode)	± 4 V pk
IEPE transducer power supply	
Current source	$4.25 \pm 1.5 \text{ mA}$
Open circuit voltage	+26 to +32 Vdc
A-weight filter	Type 0 tolerance
Conforms to ANSI Standard S1.4-1983; and to IEC 651-1979; 10 Hz to 25.6 kHz	
Crosstalk	
Between input channels, and	< -135 dB
source-to-input (Receiving channel	below signal or
source impedance = 50Ω)	< -80 dBfs of
	receiving
	channel, which-
	ever response
	is greater in
	amplitude

Time domain

Specifications apply in histogram/time and unfiltered time display	mode,
DC amplitude accuracy	±5.0 %fs
Rise time of -1 V to 0 V test pulse	<11.4 µSec
Settling time of -1 V to 0 V test pulse	<16 µSec to 1%
Peak overshoot of -1 V to 0 V test pulse	<3%

•		
Samp	ına	period

1 channel mode	3.815 µSec to 2 Sec in 2x steps
2 channel mode	7.629 µSec to 4 Sec in 2x steps
4 channel mode	15.26 µSec to 8 Sec in 2x steps
(Ontion AY6 only)	

Trigger		Source output	
Trigger modes	Internal, source, external (analog setting) GPIB	Source types	Sine, random noise, chrip, pink noise, burst random, burst
Maximum trigger delay			chirp
Post trigger	8191 seconds	Amplitude range	AC: ±5 V peak*
Pre trigger	8191 sample periods		DC: ±10 V*
No two channels can be further than			* $Vac_{pk} + Vdc \le 10 V$
±7168 samples from each other.		AC amplitude resolution	
External trigger max. input	±42 Vpk	Voltage > 0.2 Vrms	2.5 mVpeak
External trigger range		Voltage < 0.2 Vrms	0.25 mVpeak
Low range	-2 V to +2 V	DC offset accuracy	± 15 mV $\pm 3\%$ of
High range	-10 V to +10 V		$(DC + Vac_{nk})$ set-
External trigger resolution			tings
Low range	15.7 mV	Pink noise adder	Add 600 mV typical
High range	78 mV		when using pink noise
Tachometer		Output impedance	< 5 Ω
Pulses per Revolution	0.5 to 2048	Maximum loading	
RPM	5 ≤ RPM ≤ 491,519	Current	±20 mA peak
RPM Accuracy	±100 ppm (0.01%)	Capacitance	0.01 μF
/ 10001 00 /	(typical)	Sine amplitude accuracy at 1 kHz	±4% (0.34 dB) of
Tach level range	(-)	,	setting
Low range	-4 V to +4 V	Rload > 250 Ω	0.1 Vpk to 5 Vpk
High range	-20 V to +20 V	Sine Flatness (relative to 1 kHz)	±1 dB
Tach level resolution	20 7 10 120 7		0.1 V to 5 V peak
Low range	39 mV	Harmonic and sub-harmonic distort	
High range	197 mV	signals (In band)	
Maximum tach input level	±42 Vpk	0.1 Vpk to 5 Vpk sine wave	
Minimum tach pulse width	600 nSec	Fundamental < 30 kHz	< -60 dBc
Maximum tach pulse rate	400 kHz (typical)	Fundamental > 30 kHz	< -40 dBc
waxiiiuiii tacii puise rate	400 KHZ (typical)	randamontary of kills	10 450
		Digital interfaces	
		External keyboard	Compatible with
		•	PC-style 101-key
			keyboard
		GPIB	
		Conforms to the following stan	darde:
		IEEE 488.1 (SH1, AH1, T6, TE0, PP0, DC1, DT1, C1, C2, C3, C12,	L4, LE0, SR1, RL1,
		EEE 488.2-1987 Complies with SCPI 1992	·,
		Data transfer rate (REAL 64 Format)	< 45 mSec for a 401 point trace
		ment of rolliar)	TO I POINT HAVE

Serial port

Parallel port
External VGA port

Computed order tracking - Option 1D0

Maximum order x M	laximum RPM	
60		
Online (real time)	1 channel mode	25,600 Hz
	2 channel mode	12,800 Hz
	4 channel mode	6,400 Hz
Capture playback	1 channel mode	102,400 Hz
	2 channel mode	51,200 Hz

Number of orders \leq 200 $5 \leq RPM \leq 491,519$

Delta order

accuracy

(Maximum useable RPM is limited by resolution, tach pulse rate, pulses/revolution and average mode settings.)

4 channel mode

1/128 to 1/1

25,600 Hz

Doita oraoi	1/ 120 to 1/ 1
Resolution	≤ 400
(Maximum order)/(Delta ord	der)
Maximum RPM ramp rate	1000 RPM/second real-time (typical)
1000 - 10,000 RPM run up	
Maximum order	10
Delta order	0.1
RPM step	30 (1 channel)
	60 (2 channel)
	120 (4 channel)
Order track amplitude	±1 dB (typical)

Real time octave analysis - Option 1D1

Standards

Conforms to ANSI Standard S1.11 - 1986, Order 3, Type 1-D, extended and optional frequency ranges
Conforms to IEC 651-1979 Type 0 Impulse, and ANSI S1.4

1 second stable average

Single tone at band center: $\leq \pm 0.20 \text{ dB}$

Readings are taken from the linear total power spectrum bin. It is derived from sum of each filter.

1/3-octave dynamic range > 80 dB (typical) per ANSI S1.11-1986

2 second stable average

Total power limited by input noise level

Frequency ranges (at centers)

Online (real time):

	Single channel	2 channel	4 channel
1/1 octave	0.063 - 16 kHz	0.063 - 8 kHz	0.063 - 4 kHz
1/3 octave	0.08 - 40 kHz	0.08 - 20 kHz	0.08 - 10 kHz
1/12 octave	0.0997 -	0.0997 -	0.0997 -
	12.338 kHz	6.169 kHz	3.084 kHz
Capture play	back		
1/1 octave	0.063 - 16 kHz	0.063 - 16 kHz	0.063 - 16 kHz
1/3 octave	0.08 - 31.5 kHz	0.08 - 31.5 kHz	0.08 - 31.5 kHz
1/12 octave	0.0997 -	0.0997 -	0.0997 -
	49.35 kHz	49.35 kHz	49.35 kHz

One to 12 octaves can be measured and displayed.

1/1-, 1/3-, and 1/12-octave true center frequencies related by the formula: $f(i+1)/f(i) = 2^{(1/n)}$; n=1, 3, or 12; where 1000 Hz is the reference for 1/1, 1/3 octave, and $1000^*2^{(1/24)}$ Hz is the reference for 1/12 octave. The marker returns the ANSI standard preferred frequencies.

Swept sine measurements – Option 1D2

Dynamic range 130 dB
Tested with 11 dBVrms source level at: 100 mSec integration

Curve fit/synthesis - Option 1D3

20 Poles/20 zeroes curve filter frequency response synthesis pole/zero, pole residue & polynomical format

Arbitrary waveform source - Option 1D4

Amplitude range	AC: ±5 V peak*
	DC: ±10 V*
	* $Vac_{pk} + Vdc \le 10 V$
Record length	# of points = 2.56 x lines of
	resolution, or # of complex
	points = $1.28 \times lines$ of resolution
DAC resolution	
0.2828 Vpk to 5 Vpk	2.5 mV
0 Vpk to 0.2828 Vpk	0.25 mV

General Specifications

General specifications

donoral opoomoutions	
Safety standards	CSA certified for electronic test and measurement equip- ment per CSA C22.2, NO. 231 This product is designed for compliance to: UL1244, Fourth Edition IEC 348, 2nd Edition, 1978
EMI / RFI standards	CISPR 11
Acoustic power	LpA < 55 dB (Cooling fan at high speed setting) < 45 dB (Auto speed setting at 25 °C)

Fan speed settings of high, automatic, and off are available. The fan off setting can be enabled for a short period of time, except at higher ambient temperatures where the fan will stay on.

Abbreviations

dBVrms dB relative to 1 Volt rms.

dBfs dB relative to full scale amplitude range.
Full scale is approx. 2 dB below ADC overload.

Typical Typical, non-warranted, performance specification included to provide general product

information.

Environmental operating restrictions

	Operating:	Operating:	Storage &
	Disk in drive	No disk in drive	transport
Ambient temp.	4 °C to 45 °C	0 °C to 55 °C	-40 °C to 70 °C
Relative humidity			
(non-condensing)			
Minimum	20%	15%	5%
Maximum	80% at 32 °C	95% at 40 °C	95% at 50 °C
Vibrations (5 - 500 Hz)	0.6 Grms	1.5 Grms	3.41 Grms
Shock	5 G (10 mSec ½ sine)	5 G (10 mSec ½ sine)	40 G (3 mSec ½ sine)
Max. altitude	4600 meters	4600 meters	4600 meters
	(15,000 ft.)	(15,000 ft.)	(15,000 ft.)

AC power	90 Vrms - 264 Vrms
	(47 - 440 Hz)
	350 VA maximum
DC power	12 VDC to 28 VDC nominal
	200 VA maximum
DC current at 12 V	Standard: <10 A typical
	4 channel: <12 A typical
Warm-up time	15 minutes
Weight	15 kg (33 lb) net
	29 kg (64 lb) shipping
Dimensions (Excluding	bail handle and impact cover)
Height	190 mm (7.5")
Width	340 mm (13.4")
Depth	465 mm (18.3")

www.agilent.com www.agilent.com/find/35670A

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment through-out its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

MS-DOS is a U.S. registered trademark of Microsoft Corporation.

MATLAB is a U.S. registered trademark of The Math Works, Inc.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

-			-			
Δ	m	Δ	rı	•	2	c
_		v		·	u	v

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485	
China	800 810 0189	
Hong Kong	800 938 693	
India	1 800 112 929	
Japan	0120 (421) 345	
Korea	080 769 0800	
Malaysia	1 800 888 848	
Singapore	1 800 375 8100	
Taiwan	0800 047 866	
Thailand	1 800 226 008	

Europa & Middle East

Europe & Milagie East	
Austria	01 36027 71571
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	07031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
Switzerland	0800 80 53 53
United Kingdom	44 (0) 118 9276201
Other European Countries:	

Other European Countries: www.agilent.com/find/contactus

Revised: October 1, 2008

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2009 Printed in USA, January 9, 2009 5966-3064E

